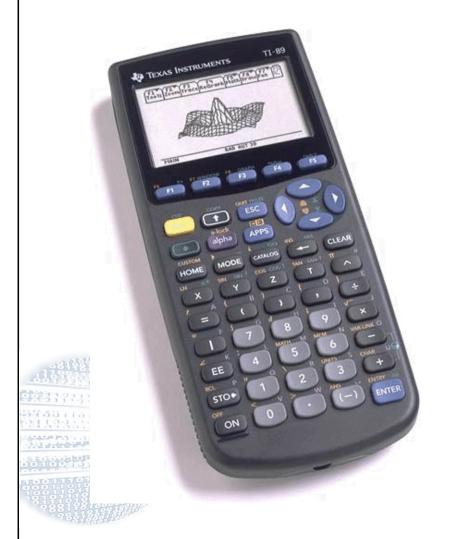
Lecture 1: What is MATLAB?

Dr. Mohammed Hawa Electrical Engineering Department University of Jordan

EE201: Computer Applications. See Textbook Chapter 1.


MATLAB

- MATLAB (MATrix LABoratory) is a numerical computing environment and programming language.
- Developed by MathWorks.
- MATLAB is widely used to solve engineering and science problems in academic and research institutions as well as the industry.
- In MATLAB, problems are expressed in familiar mathematical notation.
- MATLAB is an interactive system whose basic data element is a matrix (remember C/C++ arrays!).
- Open-source alternative is: GNU Octave.
- Paid alternative: LabVIEW MathScript

MATLAB can be used for:

- Matrix manipulations (math computations).
- Data analysis, exploration, and plotting.
- Implementation of algorithms.
- Creation of user interfaces.
- Data acquisition.
- Interfacing with programs written in other languages, (e.g., C, C++, Java, and Fortran).
- An optional toolbox (with MuPAD symbolic engine) allows accessing symbolic computing.
- An additional package, Simulink®, adds graphical simulation and model-based design.

Like a VERY advanced calculator

■ NewProb

- Done
- expand($(x + y)^6$, x) $x^6 + 6 \cdot x^5 \cdot y + 15 \cdot x^4 \cdot y^2 + 2$ () expand($(x+y)^6$, x) MAIN RAD EXACT FUNC 2730

Would you go to an engineering exam without a calculator?

Solving Simultaneous Equations

- Find the values of *x* and *y* that satisfy the following equations simultaneously:
- Can be solved by hand to get: x = 1, y = 2

- 2x + y = 4
- x y = -1

Remember how?

Simultaneous Equations

- Solving simultaneous equations:
- Can be solved by hand to get:

$$x = 1.2, y = 2.8,$$

 $z = 0.6$

• How?

$$2x + y + 2z = 4$$

$$x - y - z = -1$$

$$y - 2z = 4$$

Solving Simultaneous Equations

Many variables:

$$2x_{1} - x_{2} + 3x_{4} - x_{6} + 2x_{7} + 3x_{9} + x_{10} = 1$$

$$x_{1} + x_{3} + 3x_{4} + 2x_{5} + x_{6} + 3x_{9} - x_{10} = 2$$

$$3x_{1} + 3x_{2} - x_{3} - x_{4} + 2x_{5} + 3x_{6} - x_{7} + 2x_{8} + 3x_{9} + x_{10} = 1$$

$$2x_{1} + 3x_{2} + 3x_{3} + 2x_{4} + x_{5} + 2x_{6} + x_{7} + x_{10} = 3$$

$$3x_{1} - x_{2} - x_{3} + 2x_{4} + 2x_{5} - x_{6} + x_{7} + 3x_{8} + x_{9} + 2x_{10} = 2$$

$$x_{1} - x_{3} + x_{4} + 2x_{5} - x_{6} + x_{7} + 3x_{8} - x_{9} + 2x_{10} = 3$$

$$x_{1} + x_{2} + x_{4} - x_{5} + x_{6} + x_{7} + 2x_{8} + x_{9} + 2x_{10} = 1$$

$$3x_{1} + x_{2} - x_{3} + 3x_{4} - x_{5} + 3x_{6} + x_{7} + 2x_{8} + x_{9} + 2x_{10} = 1$$

$$-x_{1} + 2x_{2} + x_{3} + x_{4} + 3x_{5} - x_{6} + x_{7} - x_{8} - x_{9} - x_{10} = -1$$

$$-x_{1} + 2x_{2} + x_{3} + x_{4} + 3x_{5} - x_{6} + x_{7} - x_{8} - x_{9} = 2$$

Humans are note good at this.

MATLAB (a computer software) is!

MATLAB solution

```
XSE
  Edit Text Go Cell Tools Debug Desktop Window Help
                   clear;
    A = [
                                                  -1
          -1 -1
            1 0 1 -1 1 1 2 1 2
1 -1 3 -1 3 0 0 0 -1
10
11
12
13
    ];
14
15
16
17
18
19
20
21
22
23
        0
24
25
26
    ];
28 - x = A \ b
```

```
Command Window
File Edit Debug Desktop Windo
To get started, select MATLAB Hel

>> equations

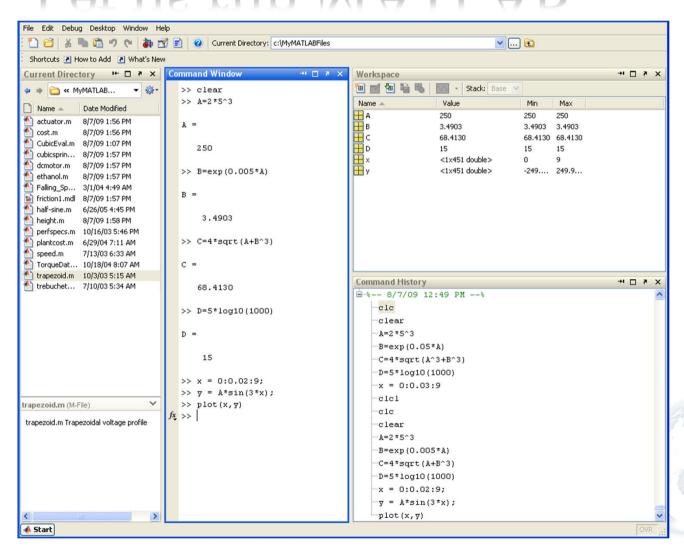
x =

-0.1607
-0.9621
0.4346
0.2301
0.8881
1.1170
0.0475
-0.3688
-0.1944
1.2742

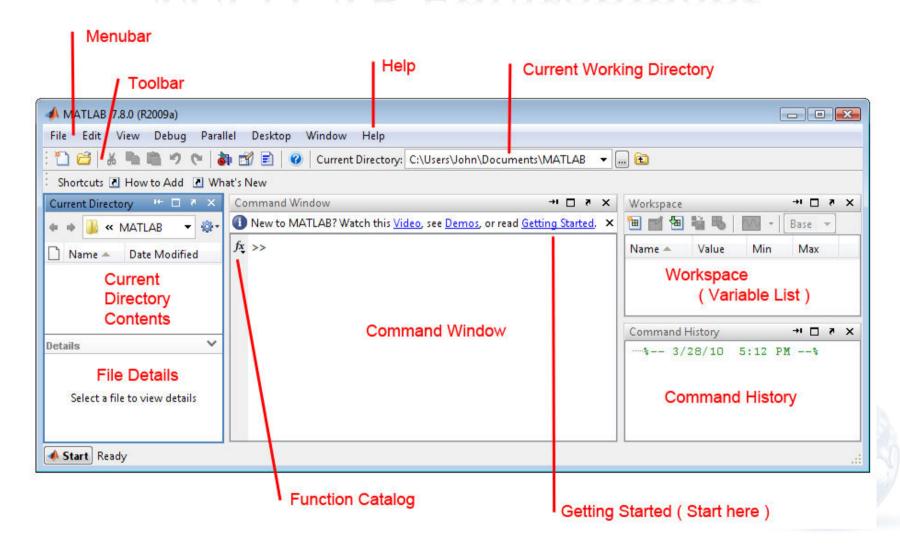
>>>
```

MATLAB is powerful!

- We often need to solve systems with 10,000 or 100,000 simultaneous equations (could be non-linear or differential equations too)
- Can be done very quickly using a computer
- This is common in engineering
 - Electrical circuits
 - Image recognition
 - Communication systems (MIMO, OFDM, etc)
 - Operations research
 - Mechanics and dynamics, etc


MATLAB vs. Programming languages

- MATLAB is a vector-based numerical analysis language:
 - Can be used as an advanced calculator and graphing tool
 - Also can be used as a programming language
- This is different than the programming languages you are familiar with (C, C++, ...)
 - Can be a little frustrating since it takes time and effort to write code in MATLAB
 - But the code is very effective and can be refined gradually


Know about MATLAB

- MATLAB is easy to begin with but needs hard work to master.
- MATLAB is optimized for performing matrix operations.
- MATLAB is interpreted
 - for the most part slower than a compiled language such as C++
 - but interactive and simplifies fixing errors
- Although primarily procedural, MATLAB does have some object-oriented elements.
- MATLAB is NOT a general purpose programming language
- MATLAB is designed for scientific computation and is not suitable for some things (such as parsing text)
- MATLAB is very useful for data analysis and rapid prototyping, but is not designed for large-scale system development.

Let us run MATLAB ...

MATLAB Environment

MATLAB as a Calculator

- You can enter expressions at the command line and evaluate them right away.
- The >> symbols indicate where commands are typed.

previous command

next command

```
>> 3 + 5 * 8

ans =

43
>>
```

Mathematical Operators

Operator	MATLAB Algebra	
+	+	5 + 4 = 9
_	_	5 - 4 = 1
×	*	5 * 4 = 20
•	/	5 / 4 = 1.25
a ^b	a^b	5^4 = 625

Order of Precedence (BEDMAS)

- B = Brackets
- E = Exponentials
- D = Division
- M = Multiplication
- A = Addition
- S = Subtraction
- Careful using brackets: check that opening and closing brackets are matched up correctly.

>>
$$3*4 + 2$$
ans =

14
>> $3*(4+2)$
ans =

18

Order of Precedence

Precedence	Operation	
First	Parentheses (), evaluated starting with the	
	innermost pair.	
Second	Exponentiation (power) ^ , evaluated from	
	left to right.	
Third	Multiplication * and division / with equal	
	precedence, evaluated from left to right.	
Fourth	Addition + and subtraction - with equal	
	precedence, evaluated from left to right.	

Exercise: Try it yourself

Entering Commands

- MATLAB retains your previous keystrokes.
- Use the \(\) key to scroll back through previous commands.
- Press the \(\) key once to see the previous entry, and so on.
- Use the \downarrow key to scroll forward.
- Edit a line using the ← and → arrow keys, the Backspace key, and the Delete key.
- Press the Enter key to execute the command.
- You can copy (highlight & ctrl+c) from Command History window to the Command Window.

Built-in Math Constants

pi	π : ratio of circle's	
	circumference to its diameter	
i	$\sqrt{-1}$: Imaginary unit	
j	$\sqrt{-1}$: Imaginary unit	
Inf	∞: Infinity	
NaN	Not-a-Number	
intmax	Largest value of integer type	
intmin	Smallest value of integer type	
ans	Temporary variable	
18189898 1181898	containing the most recent	
22237	answer	
eps	The accuracy of floating	
	point precision	
10 10 00 10 10 11 11 11 11 11 11 11 11 1	•••	

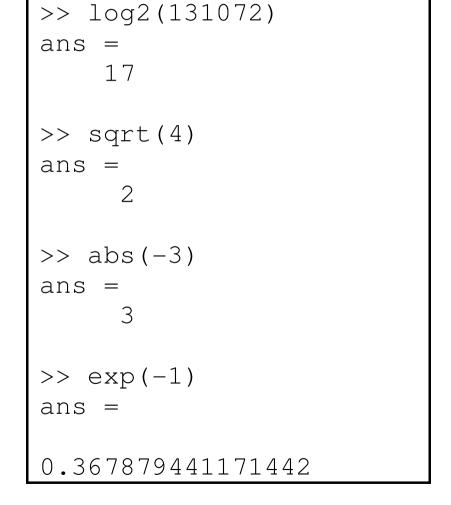
```
>> 2*pi
ans =
    6.2832
>> Inf+100000
ans =
   Tnf
>> format long g
>> 2*pi
ans =
6.28318530717959
>> 1+ans
ans =
7.28318530717959
```

Exercise

```
>> 1/0
ans =
   ???
>> 0/0
ans =
   ???
>> 7/2*i
ans =
    ???
>> 7/2i
ans =
    ???
```


Exercise: Answers

```
>> 1/0
ans =
   Inf
>> 0/0
ans =
   NaN
>> 7/2*i
ans =
   0 + 3.5000i
>> 7/2i
ans =
   0 - 3.5000i
```



Possible Formats

Command		Description and example	
format shor	rt	Four decimal digits (the default); 13.6745.	
format long	3	16 digits; 17.27484029463547.	
format shor	ct e	Five digits (four decimals) plus exponent;	
		6.3792e + 03.	
format long	g e	16 digits (15 decimals) plus exponent;	
		6.379243784781294e - 04.	
format bank	Σ	Two decimal digits; 126.73.	
format +		Positive, negative, or zero; +.	
format rat		Rational approximation; 43/7.	
format comp	pact	Suppresses some blank lines.	
format loos	se	Resets to less compact display mode.	

Built-in Functions

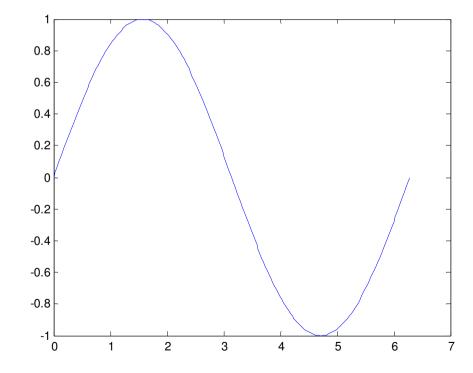
 Like a calculator, MATLAB has many built-in mathematical functions.

Common Built-in Functions

Function	MATLAB syntax*
e^x	exp(x)
\sqrt{x}	sqrt (x)
$\ln x$	log(x)
$\log_{10} x$	log10(x)
$\cos x$	cos (x)
$\sin x$	sin(x)
tan x	tan(x)
$\cos^{-1} x$	acos (x)
$\sin^{-1} x$	asin(x)
$\tan^{-1} x$	atan(x)

^{*}The MATLAB trigonometric functions listed here use radian measure. Trigonometric functions ending in d, such as sind(x) and cosd(x), take the argument x in degrees. Inverse functions such as atand(x) return values in degrees.

Exercise: Discussed Later...

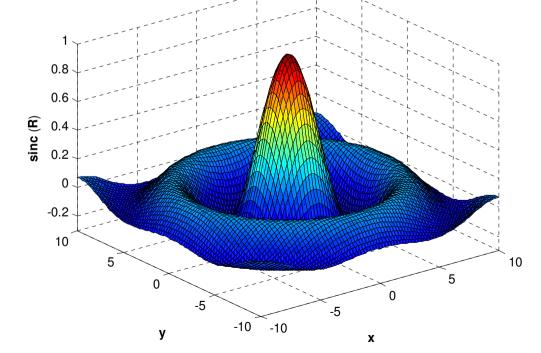

```
x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)
```


• By the way, what is the purpose of the semicolon at the end of the command?

Exercise: Discussed Later...

```
x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)
```


Copyright © Dr. Mohammed Hawa


Exercise 2: Discussed Later...

```
[X,Y] = meshgrid(-10:0.25:10,-10:0.25:10);
f = sinc(sqrt((X/pi).^2+(Y/pi).^2));
surf(X,Y,f);
axis([-10 10 -10 10 -0.3 1])
```


Exercise 2: Discussed Later...

```
[X,Y] = meshgrid(-10:0.25:10,-10:0.25:10);
f = sinc(sqrt((X/pi).^2+(Y/pi).^2));
surf(X,Y,f);
axis([-10 10 -10 10 -0.3 1])
```


Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan

To Know More: help

>> help HELP topics:

matlab\general
matlab\ops
matlab\lang
matlab\elmat
matlab\randfun

matlab\elfun
matlab\elfun
matlab\specfun
matlab\matfun
matlab\datafun
matlab\funfun
matlab\funfun
matlab\sparfun
matlab\scribe
matlab\graph2d
matlab\graph3d
matlab\graphics
matlab\graphics
matlab\strfun
matlab\strfun
matlab\strfun
matlab\strfun
matlab\imagesci

fuzzy\fuzzy
images\images
signal\signal
wavelet\wavelet

matlab\plottools

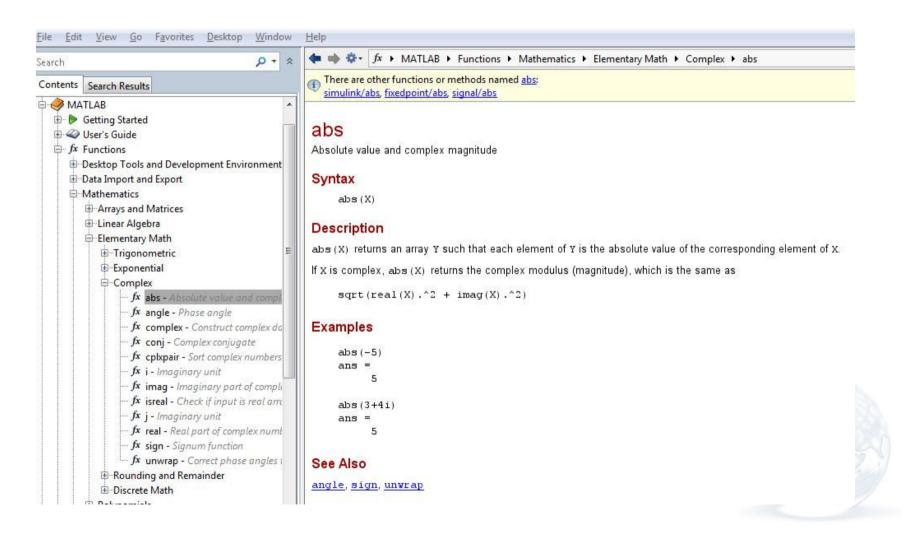
- General purpose commands.
- Operators and special characters.
- Programming language constructs.
- Elementary matrices and matrix manipulation.
- Random matrices and random streams.
- Elementary math functions.
- Specialized math functions.
- Matrix functions numerical linear algebra.
- Data analysis and Fourier transforms.
- Interpolation and polynomials.
- Function functions and ODE solvers.
- Sparse matrices.
- Annotation and Plot Editing.
- Two dimensional graphs.
- Three dimensional graphs.
- Specialized graphs.
- Handle Graphics.
- Graphical User Interface Tools.
- Character strings.
- Image and scientific data
- Graphical User Interface Tools.
- Fuzzy Logic Toolbox
- Image Processing Toolbox
- Signal Processing Toolbox
- Wavelet Toolbox

Go inside: help

```
>> help elfun
  Elementary math functions.
  Trigonometric.
    sin
                - Sine.
    sind
                - Sine of argument in degrees.
                - Hyperbolic sine.
    sinh
    asin
                - Inverse sine.
    asind
                - Inverse sine, result in degrees.
    asinh
                - Inverse hyperbolic sine.
                - Cosine.
    COS
  Exponential.
                - Exponential.
    exp
    expm1
                - Compute \exp(x)-1 accurately.
    loa
                - Natural logarithm.
                - Compute log(1+x) accurately.
    log1p
    log10
                - Common (base 10) logarithm.
    log2
                - Base 2 logarithm and dissect floating point num.
    pow2
                - Base 2 power and scale floating point number.
    realpow
                - Power that will error out on complex result.
    reallog
                - Natural logarithm of real number.
    . . .
  Rounding and remainder.
    fix
                - Round towards zero.
    floor
                - Round towards minus infinity.
    ceil
                - Round towards plus infinity.
                - Round towards nearest integer.
    round
    mod
                - Modulus (signed remainder after division).
                - Remainder after division.
    rem
    sian
                - Signum.
```


For a specific function: help exp

```
>> help exp
EXP Exponential.
  EXP(X) is the exponential of the elements of X, e to the X.
  For complex Z=X+i*Y, EXP(Z) = EXP(X)*(COS(Y)+i*SIN(Y)).


See also expm1, log, log10, expm, expint.

Overloaded methods:
    codistributed/exp
    fints/exp

Reference page in Help browser
    doc exp
```


To Know More: doc abs

Where do you get more help?

- Read your textbook.
- Practice the end-of-chapter examples.
- References in the syllabus.
- MATLAB Central: http://www.mathworks.com/matlabcentral/
- Google
- YouTube

